// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Package rlpx implements the RLPx transport protocol. package rlpx import ( "bytes" "crypto/aes" "crypto/cipher" "crypto/ecdsa" "crypto/elliptic" "crypto/hmac" "crypto/rand" "encoding/binary" "errors" "fmt" "hash" "io" mrand "math/rand" "net" "time" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/crypto/ecies" "github.com/ethereum/go-ethereum/rlp" "github.com/golang/snappy" "golang.org/x/crypto/sha3" ) // Conn is an RLPx network connection. It wraps a low-level network connection. The // underlying connection should not be used for other activity when it is wrapped by Conn. // // Before sending messages, a handshake must be performed by calling the Handshake method. // This type is not generally safe for concurrent use, but reading and writing of messages // may happen concurrently after the handshake. type Conn struct { dialDest *ecdsa.PublicKey conn net.Conn handshake *handshakeState snappy bool } type handshakeState struct { enc cipher.Stream dec cipher.Stream macCipher cipher.Block egressMAC hash.Hash ingressMAC hash.Hash } // NewConn wraps the given network connection. If dialDest is non-nil, the connection // behaves as the initiator during the handshake. func NewConn(conn net.Conn, dialDest *ecdsa.PublicKey) *Conn { return &Conn{ dialDest: dialDest, conn: conn, } } // SetSnappy enables or disables snappy compression of messages. This is usually called // after the devp2p Hello message exchange when the negotiated version indicates that // compression is available on both ends of the connection. func (c *Conn) SetSnappy(snappy bool) { c.snappy = snappy } // SetReadDeadline sets the deadline for all future read operations. func (c *Conn) SetReadDeadline(time time.Time) error { return c.conn.SetReadDeadline(time) } // SetWriteDeadline sets the deadline for all future write operations. func (c *Conn) SetWriteDeadline(time time.Time) error { return c.conn.SetWriteDeadline(time) } // SetDeadline sets the deadline for all future read and write operations. func (c *Conn) SetDeadline(time time.Time) error { return c.conn.SetDeadline(time) } // Read reads a message from the connection. func (c *Conn) Read() (code uint64, data []byte, wireSize int, err error) { if c.handshake == nil { panic("can't ReadMsg before handshake") } frame, err := c.handshake.readFrame(c.conn) if err != nil { return 0, nil, 0, err } code, data, err = rlp.SplitUint64(frame) if err != nil { return 0, nil, 0, fmt.Errorf("invalid message code: %v", err) } wireSize = len(data) // If snappy is enabled, verify and decompress message. if c.snappy { var actualSize int actualSize, err = snappy.DecodedLen(data) if err != nil { return code, nil, 0, err } if actualSize > maxUint24 { return code, nil, 0, errPlainMessageTooLarge } data, err = snappy.Decode(nil, data) } return code, data, wireSize, err } func (h *handshakeState) readFrame(conn io.Reader) ([]byte, error) { // read the header headbuf := make([]byte, 32) if _, err := io.ReadFull(conn, headbuf); err != nil { return nil, err } // verify header mac shouldMAC := updateMAC(h.ingressMAC, h.macCipher, headbuf[:16]) if !hmac.Equal(shouldMAC, headbuf[16:]) { return nil, errors.New("bad header MAC") } h.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted fsize := readInt24(headbuf) // ignore protocol type for now // read the frame content var rsize = fsize // frame size rounded up to 16 byte boundary if padding := fsize % 16; padding > 0 { rsize += 16 - padding } framebuf := make([]byte, rsize) if _, err := io.ReadFull(conn, framebuf); err != nil { return nil, err } // read and validate frame MAC. we can re-use headbuf for that. h.ingressMAC.Write(framebuf) fmacseed := h.ingressMAC.Sum(nil) if _, err := io.ReadFull(conn, headbuf[:16]); err != nil { return nil, err } shouldMAC = updateMAC(h.ingressMAC, h.macCipher, fmacseed) if !hmac.Equal(shouldMAC, headbuf[:16]) { return nil, errors.New("bad frame MAC") } // decrypt frame content h.dec.XORKeyStream(framebuf, framebuf) return framebuf[:fsize], nil } // Write writes a message to the connection. // // Write returns the written size of the message data. This may be less than or equal to // len(data) depending on whether snappy compression is enabled. func (c *Conn) Write(code uint64, data []byte) (uint32, error) { if c.handshake == nil { panic("can't WriteMsg before handshake") } if len(data) > maxUint24 { return 0, errPlainMessageTooLarge } if c.snappy { data = snappy.Encode(nil, data) } wireSize := uint32(len(data)) err := c.handshake.writeFrame(c.conn, code, data) return wireSize, err } func (h *handshakeState) writeFrame(conn io.Writer, code uint64, data []byte) error { ptype, _ := rlp.EncodeToBytes(code) // write header headbuf := make([]byte, 32) fsize := len(ptype) + len(data) if fsize > maxUint24 { return errPlainMessageTooLarge } putInt24(uint32(fsize), headbuf) copy(headbuf[3:], zeroHeader) h.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted // write header MAC copy(headbuf[16:], updateMAC(h.egressMAC, h.macCipher, headbuf[:16])) if _, err := conn.Write(headbuf); err != nil { return err } // write encrypted frame, updating the egress MAC hash with // the data written to conn. tee := cipher.StreamWriter{S: h.enc, W: io.MultiWriter(conn, h.egressMAC)} if _, err := tee.Write(ptype); err != nil { return err } if _, err := tee.Write(data); err != nil { return err } if padding := fsize % 16; padding > 0 { if _, err := tee.Write(zero16[:16-padding]); err != nil { return err } } // write frame MAC. egress MAC hash is up to date because // frame content was written to it as well. fmacseed := h.egressMAC.Sum(nil) mac := updateMAC(h.egressMAC, h.macCipher, fmacseed) _, err := conn.Write(mac) return err } func readInt24(b []byte) uint32 { return uint32(b[2]) | uint32(b[1])<<8 | uint32(b[0])<<16 } func putInt24(v uint32, b []byte) { b[0] = byte(v >> 16) b[1] = byte(v >> 8) b[2] = byte(v) } // updateMAC reseeds the given hash with encrypted seed. // it returns the first 16 bytes of the hash sum after seeding. func updateMAC(mac hash.Hash, block cipher.Block, seed []byte) []byte { aesbuf := make([]byte, aes.BlockSize) block.Encrypt(aesbuf, mac.Sum(nil)) for i := range aesbuf { aesbuf[i] ^= seed[i] } mac.Write(aesbuf) return mac.Sum(nil)[:16] } // Handshake performs the handshake. This must be called before any data is written // or read from the connection. func (c *Conn) Handshake(prv *ecdsa.PrivateKey) (*ecdsa.PublicKey, error) { var ( sec Secrets err error ) if c.dialDest != nil { sec, err = initiatorEncHandshake(c.conn, prv, c.dialDest) } else { sec, err = receiverEncHandshake(c.conn, prv) } if err != nil { return nil, err } c.InitWithSecrets(sec) return sec.remote, err } // InitWithSecrets injects connection secrets as if a handshake had // been performed. This cannot be called after the handshake. func (c *Conn) InitWithSecrets(sec Secrets) { if c.handshake != nil { panic("can't handshake twice") } macc, err := aes.NewCipher(sec.MAC) if err != nil { panic("invalid MAC secret: " + err.Error()) } encc, err := aes.NewCipher(sec.AES) if err != nil { panic("invalid AES secret: " + err.Error()) } // we use an all-zeroes IV for AES because the key used // for encryption is ephemeral. iv := make([]byte, encc.BlockSize()) c.handshake = &handshakeState{ enc: cipher.NewCTR(encc, iv), dec: cipher.NewCTR(encc, iv), macCipher: macc, egressMAC: sec.EgressMAC, ingressMAC: sec.IngressMAC, } } // Close closes the underlying network connection. func (c *Conn) Close() error { return c.conn.Close() } // Constants for the handshake. const ( maxUint24 = int(^uint32(0) >> 8) sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2 sigLen = crypto.SignatureLength // elliptic S256 pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte shaLen = 32 // hash length (for nonce etc) authMsgLen = sigLen + shaLen + pubLen + shaLen + 1 authRespLen = pubLen + shaLen + 1 eciesOverhead = 65 /* pubkey */ + 16 /* IV */ + 32 /* MAC */ encAuthMsgLen = authMsgLen + eciesOverhead // size of encrypted pre-EIP-8 initiator handshake encAuthRespLen = authRespLen + eciesOverhead // size of encrypted pre-EIP-8 handshake reply ) var ( // this is used in place of actual frame header data. // TODO: replace this when Msg contains the protocol type code. zeroHeader = []byte{0xC2, 0x80, 0x80} // sixteen zero bytes zero16 = make([]byte, 16) // errPlainMessageTooLarge is returned if a decompressed message length exceeds // the allowed 24 bits (i.e. length >= 16MB). errPlainMessageTooLarge = errors.New("message length >= 16MB") ) // Secrets represents the connection secrets which are negotiated during the handshake. type Secrets struct { AES, MAC []byte EgressMAC, IngressMAC hash.Hash remote *ecdsa.PublicKey } // encHandshake contains the state of the encryption handshake. type encHandshake struct { initiator bool remote *ecies.PublicKey // remote-pubk initNonce, respNonce []byte // nonce randomPrivKey *ecies.PrivateKey // ecdhe-random remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk } // RLPx v4 handshake auth (defined in EIP-8). type authMsgV4 struct { gotPlain bool // whether read packet had plain format. Signature [sigLen]byte InitiatorPubkey [pubLen]byte Nonce [shaLen]byte Version uint // Ignore additional fields (forward-compatibility) Rest []rlp.RawValue `rlp:"tail"` } // RLPx v4 handshake response (defined in EIP-8). type authRespV4 struct { RandomPubkey [pubLen]byte Nonce [shaLen]byte Version uint // Ignore additional fields (forward-compatibility) Rest []rlp.RawValue `rlp:"tail"` } // receiverEncHandshake negotiates a session token on conn. // it should be called on the listening side of the connection. // // prv is the local client's private key. func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey) (s Secrets, err error) { authMsg := new(authMsgV4) authPacket, err := readHandshakeMsg(authMsg, encAuthMsgLen, prv, conn) if err != nil { return s, err } h := new(encHandshake) if err := h.handleAuthMsg(authMsg, prv); err != nil { return s, err } authRespMsg, err := h.makeAuthResp() if err != nil { return s, err } var authRespPacket []byte if authMsg.gotPlain { authRespPacket, err = authRespMsg.sealPlain(h) } else { authRespPacket, err = sealEIP8(authRespMsg, h) } if err != nil { return s, err } if _, err = conn.Write(authRespPacket); err != nil { return s, err } return h.secrets(authPacket, authRespPacket) } func (h *encHandshake) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error { // Import the remote identity. rpub, err := importPublicKey(msg.InitiatorPubkey[:]) if err != nil { return err } h.initNonce = msg.Nonce[:] h.remote = rpub // Generate random keypair for ECDH. // If a private key is already set, use it instead of generating one (for testing). if h.randomPrivKey == nil { h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) if err != nil { return err } } // Check the signature. token, err := h.staticSharedSecret(prv) if err != nil { return err } signedMsg := xor(token, h.initNonce) remoteRandomPub, err := crypto.Ecrecover(signedMsg, msg.Signature[:]) if err != nil { return err } h.remoteRandomPub, _ = importPublicKey(remoteRandomPub) return nil } // secrets is called after the handshake is completed. // It extracts the connection secrets from the handshake values. func (h *encHandshake) secrets(auth, authResp []byte) (Secrets, error) { ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen) if err != nil { return Secrets{}, err } // derive base secrets from ephemeral key agreement sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce)) aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret) s := Secrets{ remote: h.remote.ExportECDSA(), AES: aesSecret, MAC: crypto.Keccak256(ecdheSecret, aesSecret), } // setup sha3 instances for the MACs mac1 := sha3.NewLegacyKeccak256() mac1.Write(xor(s.MAC, h.respNonce)) mac1.Write(auth) mac2 := sha3.NewLegacyKeccak256() mac2.Write(xor(s.MAC, h.initNonce)) mac2.Write(authResp) if h.initiator { s.EgressMAC, s.IngressMAC = mac1, mac2 } else { s.EgressMAC, s.IngressMAC = mac2, mac1 } return s, nil } // staticSharedSecret returns the static shared secret, the result // of key agreement between the local and remote static node key. func (h *encHandshake) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) { return ecies.ImportECDSA(prv).GenerateShared(h.remote, sskLen, sskLen) } // initiatorEncHandshake negotiates a session token on conn. // it should be called on the dialing side of the connection. // // prv is the local client's private key. func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remote *ecdsa.PublicKey) (s Secrets, err error) { h := &encHandshake{initiator: true, remote: ecies.ImportECDSAPublic(remote)} authMsg, err := h.makeAuthMsg(prv) if err != nil { return s, err } authPacket, err := sealEIP8(authMsg, h) if err != nil { return s, err } if _, err = conn.Write(authPacket); err != nil { return s, err } authRespMsg := new(authRespV4) authRespPacket, err := readHandshakeMsg(authRespMsg, encAuthRespLen, prv, conn) if err != nil { return s, err } if err := h.handleAuthResp(authRespMsg); err != nil { return s, err } return h.secrets(authPacket, authRespPacket) } // makeAuthMsg creates the initiator handshake message. func (h *encHandshake) makeAuthMsg(prv *ecdsa.PrivateKey) (*authMsgV4, error) { // Generate random initiator nonce. h.initNonce = make([]byte, shaLen) _, err := rand.Read(h.initNonce) if err != nil { return nil, err } // Generate random keypair to for ECDH. h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) if err != nil { return nil, err } // Sign known message: static-shared-secret ^ nonce token, err := h.staticSharedSecret(prv) if err != nil { return nil, err } signed := xor(token, h.initNonce) signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA()) if err != nil { return nil, err } msg := new(authMsgV4) copy(msg.Signature[:], signature) copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:]) copy(msg.Nonce[:], h.initNonce) msg.Version = 4 return msg, nil } func (h *encHandshake) handleAuthResp(msg *authRespV4) (err error) { h.respNonce = msg.Nonce[:] h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:]) return err } func (h *encHandshake) makeAuthResp() (msg *authRespV4, err error) { // Generate random nonce. h.respNonce = make([]byte, shaLen) if _, err = rand.Read(h.respNonce); err != nil { return nil, err } msg = new(authRespV4) copy(msg.Nonce[:], h.respNonce) copy(msg.RandomPubkey[:], exportPubkey(&h.randomPrivKey.PublicKey)) msg.Version = 4 return msg, nil } func (msg *authMsgV4) decodePlain(input []byte) { n := copy(msg.Signature[:], input) n += shaLen // skip sha3(initiator-ephemeral-pubk) n += copy(msg.InitiatorPubkey[:], input[n:]) copy(msg.Nonce[:], input[n:]) msg.Version = 4 msg.gotPlain = true } func (msg *authRespV4) sealPlain(hs *encHandshake) ([]byte, error) { buf := make([]byte, authRespLen) n := copy(buf, msg.RandomPubkey[:]) copy(buf[n:], msg.Nonce[:]) return ecies.Encrypt(rand.Reader, hs.remote, buf, nil, nil) } func (msg *authRespV4) decodePlain(input []byte) { n := copy(msg.RandomPubkey[:], input) copy(msg.Nonce[:], input[n:]) msg.Version = 4 } var padSpace = make([]byte, 300) func sealEIP8(msg interface{}, h *encHandshake) ([]byte, error) { buf := new(bytes.Buffer) if err := rlp.Encode(buf, msg); err != nil { return nil, err } // pad with random amount of data. the amount needs to be at least 100 bytes to make // the message distinguishable from pre-EIP-8 handshakes. pad := padSpace[:mrand.Intn(len(padSpace)-100)+100] buf.Write(pad) prefix := make([]byte, 2) binary.BigEndian.PutUint16(prefix, uint16(buf.Len()+eciesOverhead)) enc, err := ecies.Encrypt(rand.Reader, h.remote, buf.Bytes(), nil, prefix) return append(prefix, enc...), err } type plainDecoder interface { decodePlain([]byte) } func readHandshakeMsg(msg plainDecoder, plainSize int, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) { buf := make([]byte, plainSize) if _, err := io.ReadFull(r, buf); err != nil { return buf, err } // Attempt decoding pre-EIP-8 "plain" format. key := ecies.ImportECDSA(prv) if dec, err := key.Decrypt(buf, nil, nil); err == nil { msg.decodePlain(dec) return buf, nil } // Could be EIP-8 format, try that. prefix := buf[:2] size := binary.BigEndian.Uint16(prefix) if size < uint16(plainSize) { return buf, fmt.Errorf("size underflow, need at least %d bytes", plainSize) } buf = append(buf, make([]byte, size-uint16(plainSize)+2)...) if _, err := io.ReadFull(r, buf[plainSize:]); err != nil { return buf, err } dec, err := key.Decrypt(buf[2:], nil, prefix) if err != nil { return buf, err } // Can't use rlp.DecodeBytes here because it rejects // trailing data (forward-compatibility). s := rlp.NewStream(bytes.NewReader(dec), 0) return buf, s.Decode(msg) } // importPublicKey unmarshals 512 bit public keys. func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) { var pubKey65 []byte switch len(pubKey) { case 64: // add 'uncompressed key' flag pubKey65 = append([]byte{0x04}, pubKey...) case 65: pubKey65 = pubKey default: return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey)) } // TODO: fewer pointless conversions pub, err := crypto.UnmarshalPubkey(pubKey65) if err != nil { return nil, err } return ecies.ImportECDSAPublic(pub), nil } func exportPubkey(pub *ecies.PublicKey) []byte { if pub == nil { panic("nil pubkey") } return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:] } func xor(one, other []byte) (xor []byte) { xor = make([]byte, len(one)) for i := 0; i < len(one); i++ { xor[i] = one[i] ^ other[i] } return xor }