
Informe de actividades Susana Márquez Fondecyt 1191893 etapa Abril - Julio 2020

I. OBJECTIVE

To track Paenibacillus head, first it is important defining their position. To tackle this problem, we consider that the
main movment between two time-lapses will be done by the heads. Then, we subtract different picture and propose .

II. STEPS TO FIND HEADS

The process to find the Paenibacillus’ heads could be divided into three general steps; reading and adaptation of
the pictures, the recognition of the contours from the differences of the pictures in time, and finally the grouping of
points that give clue about where there are the heads. In each step, there are different filters with numbers that could
be changed to improve the performance of the program.

In the next section, all the details will be explained including the Python coding and the mentioned filter numbers.

A. Read and adapt images

To identify heads, we consider the subtraction of a picture in four different time-lapses. The program starts by
reading the images (lines 1-9). The first step is to define the parameters for the resizing, in this case, 40% (lines
10-13). After that, to facilitate the process, each picture is resized, converted to black and white, and smoothed by
the OpenCV filter GaussianBlur (lines 14-17).

1 k0=0
2 i n f n s = glob (” . / p i c t u r e s /∗ . t i f ”)
3 i n f n s = sorted (i n f n s)
4 f i g , ax = p l t . subp lo t s (1)
5 (xi , yi , xf , y f)=(0 ,0 ,1920 ,2560)
6 img0A = cv2 . imread (i n f n s [k0]) [y i : yf , x i : x f]
7 img0B = cv2 . imread (i n f n s [k0 +1]) [y i : yf , x i : x f]
8 img0C = cv2 . imread (i n f n s [k0 +2]) [y i : yf , x i : x f]
9 img0D = cv2 . imread (i n f n s [k0 +3]) [y i : yf , x i : x f]

10 s c a l e p e r c e n t =40
11 width = int (img0A . shape [1] ∗ s c a l e p e r c e n t / 100)
12 he ight = int (img0A . shape [0] ∗ s c a l e p e r c e n t / 100)
13 dim = (width , he ight)
14 img00A = cv2 . GaussianBlur (cv2 . cvtColor (cv2 . r e s i z e (img0A , dim , i n t e r p o l a t i o n = cv2 .INTER AREA) ,
15 cv2 .COLOR BGR2GRAY) , (21 , 21) , 0)
16 img00B = cv2 . GaussianBlur (cv2 . cvtColor (cv2 . r e s i z e (img0B , dim , i n t e r p o l a t i o n = cv2 .INTER AREA) ,
17 cv2 .COLOR BGR2GRAY) , (21 , 21) , 0)
18 img00C = cv2 . GaussianBlur (cv2 . cvtColor (cv2 . r e s i z e (img0C , dim , i n t e r p o l a t i o n = cv2 . INTER AREA) ,
19 cv2 .COLOR BGR2GRAY) , (21 , 21) , 0)
20 img00D = cv2 . GaussianBlur (cv2 . cvtColor (cv2 . r e s i z e (img0D , dim , i n t e r p o l a t i o n = cv2 .INTER AREA) ,
21 cv2 .COLOR BGR2GRAY) , (21 , 21) , 0)

B. Recognition of the contours

The second part starts subtracting the different time-lapses images and defining the main contours of what moves
in time. After that, the obtained curves are fitted to ellipses whose centers of mass and measures of the axes are used
to find the positions of the heads.

2

b) c) d)

a)

FIG. 1: Steps of adaptation of the images. a) Original image and size. b) Image resized. c) Image converted to black and
white. d) Image blured.

1. Defining contours

To subtract the pictures in the time we use the function compare ssim (lines 1-6). After that, the resulting pictures
are binarized to simplify the process of contour find (lines 7-12). Figure 2 shows the result after this process.

1 (score , d i f f) = compare ssim (img00A , img00B , f u l l = True)
2 d i f f = (d i f f ∗ 2 5 5) . astype (” u int8 ”)
3 (score2 , d i f f 2) = compare ssim (img00B , img00C , f u l l = True)
4 d i f f 2 = (d i f f 2 ∗ 2 5 5) . astype (” u int8 ”)
5 (score3 , d i f f 3) = compare ssim (img00C , img00D , f u l l = True)
6 d i f f 3 = (d i f f 3 ∗ 2 5 5) . astype (” u int8 ”)
7 thresh = cv2 . th r e sho ld (d i f f , 0 , 255 ,
8 cv2 .THRESH BINARY INV | cv2 .THRESH OTSU) [1]
9 thresh2 = cv2 . th r e sho ld (d i f f 2 , 0 , 255 ,

10 cv2 .THRESH BINARY INV | cv2 .THRESH OTSU) [1]
11 thresh3 = cv2 . th r e sho ld (d i f f 3 , 0 , 255 ,
12 cv2 .THRESH BINARY INV | cv2 .THRESH OTSU) [1]

a)

b) c)

FIG. 2: Image subtraction. a) Four blurred images and the magnification to visualize the head displacement. b) Result of the
subtraction of the two first pictures. c) Result of the three binarized subtraction images.

The binarized images are used to find the contours by the function findContours. To join the contours we use
the code from the webpage https://dsp.stackexchange.com/questions/2564/opencv-c-connect-nearby-contours-based-
on-distance-between-them. This code considers an additional function find if close defined apart (at the beginning
of the program) that receives two contours and returns true if they are closer than a distance mincontourdist, and

3

false otherwise.

1 mincontourd i s t =50;
2 def f i n d i f c l o s e (cnt1 , cnt2) :
3 row1 , row2 = cnt1 . shape [0] , cnt2 . shape [0]
4 for i in range (row1) :
5 for j in range (row2) :
6 d i s t = np . l i n a l g . norm(cnt1 [i]− cnt2 [j])
7 i f abs (d i s t) < mincontourd i s t :
8 return True
9 e l i f i==row1−1 and j==row2−1:

10 return False

After that, all the contours that are evaluated as close are arranged as a new shape with a bigger contour associated.

1 img=thresh
2 contours , h i e r = cv2 . f indContours (img . copy () , cv2 .RETR EXTERNAL, 2)
3 LENGTH=len (contours)
4 s t a t u s = np . z e ro s ((LENGTH, 1))
5 for i , cnt1 in enumerate(contours) :
6 x = i
7 i f i != LENGTH−1:
8 for j , cnt2 in enumerate(contours [i + 1 :]) :
9 x = x+1

10 d i s t = f i n d i f c l o s e (cnt1 , cnt2)
11 i f d i s t == True :
12 va l = min(s t a t u s [i] , s t a t u s [x])
13 s t a t u s [x] = s t a t u s [i] = va l
14 else :
15 i f s t a t u s [x]==s t a t u s [i] :
16 s t a t u s [x] = i+1
17
18 u n i f i e d = []
19 maximum = int (s t a t u s .max())+1
20 for i in range (maximum) :
21 pos = np . where (s t a t u s==i) [0]
22 i f pos . s i z e != 0 :
23 cont = np . vstack (contours [i] for i in pos)
24 h u l l = cv2 . convexHull (cont)
25 u n i f i e d . append (h u l l)
26 p l t . imshow (cv2 . drawContours (d i f f , un i f i ed , −1 , (0 ,255 ,0) , 2))
27 p l t . imshow (cv2 . drawContours (thresh , un i f i ed ,−1 ,255 ,−1) ,cmap=’ gray ’)

The last exposed code is repeated three times to find the contours associated with the differences between the first
and second pictures, second and third pictures, and third and fourth pictures. For the picture shown at the beginning,
we can observe in figure 3 the result after joining contours.

FIG. 3: Result of joined contours.

4

2. Define ellipses

Considering that Paeni’s heads could be compared with ellipses, we associate each found shape to an ellipse taking
saving their center of mass positions and the main features; area, and axes lengths. In this process, three filters are
applied. First, it has to be considered that the definition of ellipses required six or more points in the shape contour
(lines 1 and 7). Additionally, a minimum area (areasmin) is set in order to discard the smallest movements which
probably not correspond to heads (line 9). Finally, circular shapes presumably are vortexes, therefore if the ellipse’s
axes have a difference smaller than a set variable difaxes are discard too (lines 2 and 10).

As it was mentioned, the positions of the center of mass, the areas and axes lengths are reserved in arrays positions0,
areas0 and axes0 (lines 3 - 5 and 11 - 13).

1 areamin =5000;
2 d i f a x e s =10;
3 p o s i t i o n s 0 = [] ;
4 areas0 = [] ;
5 e j e s 0 = [] ;
6 for i in range (0 , len (u n i f i e d)) :
7 i f len (u n i f i e d [i]) >5:
8 area=np . p i ∗cv2 . f i t E l l i p s e (u n i f i e d [i]) [1] [0] ∗ cv2 . f i t E l l i p s e (u n i f i e d [i]) [1] [1]
9 i f area>areamin :

10 i f np . abso lu t e (cv2 . f i t E l l i p s e (u n i f i e d [i]) [1] [0]
11 −cv2 . f i t E l l i p s e (u n i f i e d [i]) [1] [1]) > d i f a x e s :
12 p o s i t i o n s 0 . append (cv2 . f i t E l l i p s e (u n i f i e d [i]) [0])
13 e j e s 0 . append (cv2 . f i t E l l i p s e (u n i f i e d [i]) [1])
14 areas0 . append (np . p i ∗cv2 . f i t E l l i p s e (u n i f i e d [i]) [1] [0]
15 ∗cv2 . f i t E l l i p s e (u n i f i e d [i]) [1] [1])

The presented code and classification of the shape are run for each binarized picture, and the positions, areas, and
axes are reserved in arrays with the same names but the index 1 and 2. In the figure 4, it is presented the center of
mass of the set ellipses in each time-lapses subtraction.

FIG. 4: The positions of ellipses centers of mass. Blue points correspond to the first subtraction ellipses, red points correspond
to second subtraction, and green points correspond to third subtraction.

C. Grouping of points

To identify which of the found shapes are Paeni’s head it is considered the expected persistent movement in time.
Therefore, the found ellipses are grouped according to the distance of their center of mass and the overlapping. Finally,
taking into account that the Paeni movement presumably is in a straight line, a linear fit is done per group in order
to discard other circle movements or possible vortex.

The first step is grouping the ellipses identified in the two first subtraction pictures (the clusters are saved in the
variable clst0). In this case, the criteria to consider two ellipses in the same cluster is that they are half overlapped.
That is, the distance between their center of mass (dist) is higher than a minimum distance dmin, and at the same

5

time shorter than the longer semi-axes of one of the ellipses (lines 8 and 9). In lines 4 and 6, the length of the
semi-axes is defined. The selection is summarized in figure 5.

1 dmin=20;
2 c l s t 0 = [] ;
3 for i in range (0 , len (p o s i t i o n s 0)) :
4 distmin0=e j e s 0 [i] [1] / 2 ;
5 for j in range (0 , len (p o s i t i o n s 1)) :
6 distmin1=e j e s 1 [j] [1] / 2 ;
7 d i s t=d i s t anc e . euc l i d ean (p o s i t i o n s 0 [i] , p o s i t i o n s 1 [j])
8 i f dmin<d i s t<distmin0 or dmin<d i s t<distmin1 :
9 c l s t 0 . append ([i , j])

dmin dist

distmin0

distmin1

< < or

a) b)

FIG. 5: a) An example of three ellipses that resulted from the subtraction of the image in the different time-lapses and their
centers of mass. They are overlapped enough to form a cluster. b) A scheme to show the cases in which the two first centers
of mass will be classified in the same cluster. The distance between the center of mass should be longer than dmin and shorter
than one of the ellipse major semi-axes.

After that, the clusters are re-form appending an ellipse of the third image subtraction group to the clusters (clst0)
previously defined. There are two cases in which an ellipse will be introduced in a previous array. The first possibility
is that the ellipses that form a cluster are both overlapped with a third ellipse. Similar to the previous section, it is
requested that the distance between the centers of mass of ellipses (defined in lines 7 snd 8) is longer than dmin and
shorter than the major semi-axe of the new third ellipse (lines 4, 9-11). This is shown in figure 6 a).

1 c l s t 1 = [] ;
2 s i z e 1 = [] ;
3 for i in range (0 , len (p o s i t i o n s 2)) :
4 distmin2=e j e s 2 [i] [1] / 2 ;
5 for j in range (0 , len (c l s t 0)) :
6 distmin1=e j e s 1 [c l s t 0 [j] [1]] [1] / 2 ;
7 d i s t 1=d i s t anc e . euc l i d ean (p o s i t i o n s 2 [i] , p o s i t i o n s 0 [c l s t 0 [j] [0]])
8 d i s t 2=d i s t anc e . euc l i d ean (p o s i t i o n s 2 [i] , p o s i t i o n s 1 [c l s t 0 [j] [1]])
9 i f dmin<d i s t1<distmin2 and dmin<d i s t2<distmin2 :

10 c l s t 1 . append ([p o s i t i o n s 0 [c l s t 0 [j] [0]] , p o s i t i o n s 1 [c l s t 0 [j] [1]] , p o s i t i o n s 2 [i]])
11 s i z e 1 . append (e j e s 0 [c l s t 0 [j] [0]] [0])
12 e l i f dmin<d i s t2<distmin2 and dmin<d i s t2<distmin1 :
13 c l s t 1 . append ([p o s i t i o n s 0 [c l s t 0 [j] [0]] , p o s i t i o n s 1 [c l s t 0 [j] [1]] , p o s i t i o n s 2 [i]])
14 s i z e 1 . append (e j e s 0 [c l s t 0 [j] [0]] [0])

The other alternative is considering that the velocity in some heads could be high and the first and third ellipses
(in time) are not be overlapped enough. In this case, only the distance between second and third centers of mass is
considered (dist2, line 8), but different from the first cluster formation, it is requested that the distance dist2 should
be longer than dmin, and shorter than both major semi-axes (lines 4, 6, 12-14). This is shown in figure 6 b).

Once the arrangements are ready, it is made a linear fitted using the three points of each group (lines 2 - 5, figure 7
a)). The error associated with this adjustment defines the last filter; since the head’s movement should be persistent
if the error is higher than errorMin (in this case is 0.9) the cluster is discarded (lines 6 - 11). The final result is given
by an array called heads which contains all the positions (x, y) of the centers of mass of the first ellipses belonging to
the clusters that passed all the filters (lines 12 - 19). The final output is shown in figure 7 b).

6

distmin2

dmin

<
dist2

<

distmin2

dist1

dmin
< <

distmin1

dmin
<

dist2
< distmin2

and and

a) b)

FIG. 6: The scheme shows the two alternatives to add a third point to a cluster. a) The distance between centers of mass
should be shorter than the major semi-axe of the third ellipse. b) The distance between the second and third centers of mass
should be shorter than the major semi-axes of the second and third ellipses.

1 e r r o r = [] ;
2 for i in range (0 , len (c l s t 1)) :
3 model=np . p o l y f i t (np . t ranspose (c l s t 1 [i]) [0] , np . t ranspose (c l s t 1 [i]) [1] , 1)
4 p r e d i c t = np . poly1d (model)
5 e r r o r . append (r 2 s c o r e (np . t ranspose (c l s t 1 [i]) [1] , p r e d i c t (np . t ranspose (c l s t 1 [i]) [0])))
6 j = [] ;
7 errorMin =0 ,9;
8 for i in range (0 , len (c l s t 1)) :
9 i f e r r o r [i]> errorMin :

10 j . append (i) ;
11 c l s t = [] ;
12 s i z e = [] ;
13 for i in range (0 , len (j)) :
14 c l s t . append (c l s t 1 [j [i]])
15 s i z e . append (s i z e 1 [j [i]])
16 heads =[i [0] for i in c l s t] ;
17 heads

Here, the error errorMin could be relaxed in order to identify the heads that are turning, and eventually forming a
vortex.

b)

a)

FIG. 7: a) Linear adjustment per group. b) The final output that shows heads positions (x, y) (in this case, only one).

7

III. SUMMARY OF FILTERS

The program considers five variables in different parts of the code that can change to make the head selection more
flexible or strict. Here these filters are reviewed.

• mincontourdist=50
The function find if close is used to find if two contours are close enough. If the distance in pixels is shorter
than mincontourdist the function will return True, otherwise, False. Then, mincontourdist could be a smaller
(higher) number to be more strict (flexible) and obtain more (less) contours smaller (bigger).

• areasmin=5000
Before defining ellipses, all the shapes whose area is smaller than areasmin are discarded. If this variable is
relaxed it is possible to identify smaller heads initially dismissed.

• difaxes=10
It is considered that vortexes will form more circular shapes in the time. Therefore, ellipses whose axes are too
similar (difference smaller than ten pixels), the contour is discarded.

• lstinlinedmin
To form the ellipses clusters the distance between the centers of mass should be higher than a minimum distance
to discard vortex. To consider heads with a specific velocity, this number could be increased (decreased) to
include centers of mass farther (closer).

• errorMin
For now, the program is adapted to identify heads that are moving in a straight line. Hence, this variable could
be relaxed if it is desired to consider more circular movements.

IV. CONNECTION WITH TRACKING CODE

In order to follow Paeni’s heads, it is key to have the initial box position and size. The square length is defined
from the longer ellipse semi-axe (line 3), while the position, considering that the head center of mass should be in the
center of the square (illustrated in figure 8 a)). Then, to initialize the tracking, the (x, y) top-left vertex of the square
is determined by subtracting half of the box length to the center of mass coordinates (lines 4, 5). The result in the
example is showed in figure 8 b).

1 nhead=0;
2 f i g , ax = p l t . subp lo t s (1)
3 h ,w=1∗ s i z e [nhead] , 1∗ s i z e [nhead]
4 xmin=heads [nhead] [0] − (w/2)
5 ymin=heads [nhead] [1] − (h/2)
6 r e c t = patches . Rectangle ((xmin , ymin) ,w, h , l i n ew id th =1, edgeco l o r=’ r ’ , f a c e c o l o r=’ none ’)
7 ax . imshow (img00A , cmap=’ gray ’)
8 ax . add patch (r e c t)
9 p l t . show ()

h

w

(headsx, headsy)

(xmin, ymin)a) b)

FIG. 8: a) The scheme shows the relation between the code output and the initialization tracking variables. b) Tracking
initialization box.

8

V. RESULTS

A. Positive results

The figure 9 shows some examples where the heads are well identified.

FIG. 9: Satifactory results.

B. Results to improve

In some cases, the program is not able to identify the heads. In the first picture in figure 10 there are two heads too
close and the subtraction of the image is not able to distinguish them as different shapes. The other pictures show
has too much noise moving which makes hard the process of identification.

FIG. 10: Deficient results.

	Objective
	Steps to find heads
	Read and adapt images
	Recognition of the contours
	Defining contours
	Define ellipses

	Grouping of points

	Summary of filters
	Connection with Tracking code
	Results
	Positive results
	Results to improve

